WWW.EL.Z-PDF.RU
БИБЛИОТЕКА  БЕСПЛАТНЫХ  МАТЕРИАЛОВ - Онлайн документы
 


«В работе Евклида «Начала» сложение и вычитание сводились к сложению и вычитанию отрезков, умножение – к построению прямоугольников на ...»

История возникновения и становления аналитических методов.

Интерес к векторам и векторному исчислению пробудился у математиков в 19 веке в связи с потребностями механики и физики. Однако истоки исчисления с направленными отрезками возникли в далеком пришлом. В Древней Греции, пифагорейцы, открыв иррациональные числа, которые нельзя выразить дробями (,…), пришли к выводу, что не всякую величину можно выразить дробями. Вследствие этого математики того времени попытались свести вопросы арифметики и алгебры к решению задач геометрическим путем. Таким образом, было положено начало геометрической теории отношений Евдокса (408-355 гг. до н.э.), а позднее «геометрической алгебре».

В работе Евклида «Начала» сложение и вычитание сводились к сложению и вычитанию отрезков, умножение – к построению прямоугольников на отрезках, соответствующих по длине множителям, а деление – к операции «приложения» геометрических фигур.

В последствии в 16-17 вв. геометрическая алгебра из-за ограниченности своих средств исследования стала тормозом развития науки.

Однако, геометрическое исчисление сыграло значительную роль в развитии математики, в том числе и для теории векторов, послужив истоком развития этой теории.

Еще в работе «Механические проблемы», созданной в школе Аристотеля, введен термин «сложение движений», т.е. скоростей, и сформулировано правило параллелограмма. Его использовал Архимед в работе «О спиралях», а позже – Птолемей. Астрономы средневекового Востока, развивая теорию Птолемея, постоянно использовали «сложение движений».

В 1587 г. был опубликован на голландском языке трактат фламандского ученого С. Стевина (1548-1620) «Начала статики». В нем автор, рассматривая сложение сил, приходит к выводу, что для нахождения результата сложения двух сил, действующих под углом 90, необходимо воспользоваться «параллелограммом сил», при этом для обозначения сил С. Стевин ввел стрелки. Иначе говоря, С. Стевин впервые ввел сложение двух векторов, перпендикулярных друг другу. Далее, Стевин в «Основах статики» и Валлис (1616-1703) в «Механике» сформулировали правила параллелограмма и параллелепипеда для сложения направленных отрезков, которыми они изображали силы, скорости, ускорения.

В конце 16- начале 17 в. многие ученые - физики, в том числе Леонардо да Винчи, Галилео Галилей, пользовались направленными отрезками для наглядного представления сил. Формулируя свои законы движения планет, Кеплер по существу рассматривает направленный отрезок, началом которого является Солнце, а конец совпадает с движущейся точкой.

Однако в рассматриваемую эпоху в естествознании еще не оформилось четко понятия векторной величины, а идеи алгебраических действий с направленными отрезками лишь зарождались.

Исторически развитие векторного исчисления шло тремя путями: геометрическим (исчисление отрезков), физическим (исследование векторных величин, встречаемых в естествознании), и алгебраическим (расширение понятия операции при создании современной алгебры).

Начала исчисления направленных отрезков были впервые изложены норвежцем Каспаром Весселем в мемуаре «Опыт об аналитическом представлении направления и его применениях, преимущественно к решению плоских и сферических многоугольников», опубликованном в «Трудах Датской Академии наук» в 1799 г. Вессель создал свой труд, исходя из чисто практических задач – облегчить труд геодезиста-землемера.

Вессель впервые представил комплексные числа как направленные отрезки. Он ввел операции умножения и деления направленных отрезков на основе операций с комплексными числами.

Так, результатом умножения отрезков z1 и z2, где z1=r1(cos+isin), z2=r2(cos+isin), является отрезок z1z2=r1r2(cos()+isin()). При этом отрезок z1 поворачивался на угол, а его длина r1 умножалось на число r2.

Векторную алгебру на плоскости (или двумерное векторное пространство) Вессель строит почти так же, как она изложена в наших учебниках. Для иллюстрации приведем его определение суммы нескольких векторов, следующее за определением суммы двух направленных отрезков: «Чтобы сложить более двух отрезков, нужно следовать тому же правилу: располагаем их так, чтобы конец первого совпадал с началом второго, а конец второго совпадал с первой точкой третьего и т. д., затем соединяем отрезком ту точку, где первый отрезок начинается с той точкой, где последний отрезок заканчивается, и называем этот последний отрезок суммой всех данных отрезков». Причем он подчеркивает, что в расширенное понятие сложения включен как частный случай и старый смысл этого действия, т.е. «Если складываемые отрезки одинаково направлены, то это определение суммы вполне согласуется с обычным сложением».

Вессель также строит исчисление направленных отрезков в пространстве (трехмерное векторное пространство) и, развивая оригинальную «алгебру вращения сферы», применяет ее к решению сферических треугольников и многоугольников. «Опыт» Весселя свидетельствует о том, что именно удовлетворение потребностей прикладной геометрии привело к развитию векторного исчисления.

Об этом говорят и философские воззрения великих ученых о роли математики в исследовании явлений природы. Система координат Р. Декарта основана на его концепции единой математики, объединяющей геометрию и алгебру. Развивая мысли Декарта о матемизации естествознания, Лейбниц писал: «Алгебра выражает величину необходим ещё иной, чисто геометрический анализ, непосредственно выражающий положение». Лейбниц говорил о построении геометрического исчисления, изучающего направленные отрезки, их длины, углы между ними. Эти мысли стали исходной точкой для многих геометрических работ.

Видное место в истории векторного исчисления занимает книга Карно «Геометрия положения» (1803). В ней автор вводит понятие геометрического количества, под которым он подразумевает в основном направленный отрезок, и занимается действиями над ориентированными фигурами, в частности отрезками. До него положительные и отрицательные отрезки рассматривались лишь в пределах одной прямой, он же ввел отрезки, имеющие любое направление, и фактически проложил путь к векторному исчислению. Некоторые введенные Карно термины и символы, в частности обозначение вектора с помощью черты наверху (, ), сохранились и поныне.

В 1835 г. Дж. Белаватис в «Теории эквиполентности» ввел свободные векторы, назвав эквиполентными направленные отрезки с равной длиной и совпадающими направлениями.

В сочинении по аналитической и проективной геометрии «Барицентрическое исчисление» (1827) немецкий математик А. Мебиус в известной мере продолжил труд Карно и систематизировал его идеи. Автор впервые представлял геометрическое количество АВ в виде разности точек: В – А.

Швейцарский математик Жан Арган (1768-1822) написал в 1806 г. «Опыт о способе изображения мнимых количеств в геометрических построениях». Арган ставит и корректно решает задачу построения исчисления направленных отрезков, которые он называет «направленными линиями». Примерно в то же время появился и ряд других работ (М. Бюэ, Дж. Уоррена и др.), в которых делаются попытки обобщения алгебраических понятий таким образом, чтобы «числами» и «величинами» охватить отрицательные и комплексные числа, и направленные отрезки.

В математике эта теория окончательно утвердилась после «курса алгебраического анализа» (1821) О. Коши и «Теории биквадратичных вычетов» (1832) Гаусса.

Дальнейшее развитие векторного исчисления связано с исследованиями гиперкомплексных числел, с помощью которых можно было бы изучать повороты направленных отрезков в пространстве.

Представители английской школы символической алгебры Дж. Пикок (1791-1858), Д. Грегори (1813-1844), А.Де Морган (1806-1874), Дж. Гревс (1806-1870) получили ряд интересных результатов, изучая триплеты, т.е. выражения вида

t=a+bi+cj,

где i2=-1,

j2=-1, a, b, c – действительные числа.

Однако им не удавалось так задать операции с триплетами, чтобы наряду с умножением была бы выполнима операция деления, кроме деления на нуль. У. Гамильтон в течение нескольких лет изучал операции с триплетами. Проделав громадные вычисления, он убедился, что на множестве триплетов систему с делением построить невозможно, и перешел к исследованию кватернионов, т.е. выражений вида

w=a+bi+cj+dk,

где i2=j2=k2=-1,

ij=-ji=k, jk=-kj=I, ki=-ik=j, a,b,c,d – действительные числа.

В своем труде «Лекции о кватернионах» Гамильтон дал строгое изложение алгебры комплексных чисел и создал учение, которое явилось одним из алгебраических источников развития современного векторного исчисления. В работе автор впервые вводит термины «вектор» (от лат. vector – «несущий или ведущий, влекущий, переносящий»), «скаляр», скалярное и векторное произведения, а так же определяет операции с векторами в трехмерном пространстве. Он писал: «Шаг от точки А к точке В можно рассматривать как работу по транспортировке или переносе подвижной точки из начального положения в конечное».

Теорию кватернионов развил и усовершенствовал математик и физик П. Тэт (1831-1901), посвятивший теории кватернионов и ее приложениям к физике 70 своих работ. В 1867 г. в «Элементарном трактате по теории кватернионов» Тэт впервые дал векторное изложение аналитической геометрии. В главе «Геометрия прямой и плоскости» Тэт предложил те задачи, которые и сейчас входят в учебники: найти уравнение прямой, проходящей через две данные точки; найти длину перпендикуляра, опущенного из данной точки на плоскость; найти условие того, что четыре данные точки лежат в одной плоскости, и т.д.

Грассман в труде «Учение о протяженности» (1844 г.) впервые излагает учение об n- мерном евклидовом пространстве, которое как частный случай включает теорию векторов на плоскости и в трехмерном пространстве. Векторы, названные автором палочками, он обозначал жирными буквами латинского алфавита. Скалярное произведение векторов, названное им внутренним произведением, он обозначал a | b; векторное произведение, внешним произведением, он обозначал [a, b].

Во второй половине 19 в. идеи векторного исчисления получили свое развитие, в основном, в области физики. Так, Сен-Венан (1797-1886), опираясь на труды Валлиса и Стевина, в работе «О геометрических суммах и разностях и их применении для упрощения изложения механики» (1845 г.) разработал теорию сложения и вычитания направленных отрезков. Джемс Кларк Максвелл (1831-1879), один из создателей теории электромагнитного поля, применил в своем «Учении об электричестве и магнетизме» векторное исчисление. «Ценность идеи вектора несказанна», - писал Максвелл Тэту. Из разбухшего аппарата теории кватернионов он выбрал то, что необходимо для векторного исчисления, и тем самым создал удобный инструмент, который широко использует современная физика.

Однако современный вид придали векторному исчислению в конце 19 в. американский физик, один из основателей химической термодинамики и статической механики - Дж. Гиббс (1839-1903), Грассман, и английский физик О. Хевисайд (1850-1925), применивший векторы в своей «Электромагнитной теории».

В последней четверти 19 в. происходит слияние, синтез трех путей (геометрического, алгебраического и физического) исторического развития и трех источников формирования векторного исчисления. Векторное исчисление становится независимой ветвью математики.

В современной математике раздел, в котором излагается учение о действиях с векторами, называют векторной алгеброй, так как эти действия имеют много свойств с алгебраическими действиями. Наряду с ней Гамильтон создал и векторный анализ, изучающий переменные векторы - векторные функции, и определил производные скалярной функции по векторному аргументу (градиент) и некоторые виды производных вектор-функций векторного аргумента – дивергенцию и роторы.

История векторного анализа подчеркивает неразрывную связь отдельных областей математики – алгебры, геометрии, математического анализа, теории функций комплексного переменного. Созданные в 16 в. для решения алгебраических уравнений комплексные числа в 19 в. стали образцом для открытия теории гиперкомплексных чисел, которая вскоре привела ученых к теории кватернионов и к векторному исчислению. Векторный анализ, построенный как математический аппарат для изучения электричества и магнетизма, стал научной базой для развития физических теорий, что в последствии привело к созданию тех благ цивилизации, которыми сейчас пользуется человечество.

Похожие работы:

«Некоммерческое партнерство Саморегулируемая организация "Региональное Объединение Проектировщиков" (НП СРО "РОП") П р о т о к о л № 454 заседания Совета саморегулируемой организации Некоммерческого партнерства "Региональное Объединение Проектировщиков" 16.05.2016 г. Место проведения заседания: г. Москва, ул. Котляковская, д...»

«VolkswagenPolo Comfortline 90 л.с. 1,598 cm3 155 Нм, 3800 об/мин 5-МКПП 178 км/ч 11,2 с 5,7 л 460 л Белый Мощность двигателя Объем двигателя Максимальный крутящий момент Трансмиссия Мак...»

«ДОГОВОР № FORMTEXT 00участия в долевом строительстве г.Ковров " FORMTEXT 00"  FORMTEXT декабря 20 FORMTEXT 14 годаОбщество с ограниченной ответственностью "СК Континент" (далее – "Застройщик") от имени которого на основании доверенности, зарегистрированной в реестре за № 1-1245 от 30.09.2015 года, удостоверенной Кармановой...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИРОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования"ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Физико-технический институт Кафедра моделирования физических процессов и си...»

«ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ НАЧАЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ПРОФЕССИОНАЛЬНЫЙ ЛИЦЕЙ № 13 г.РАМЕНСКОЕ МОСКОВСКОЙ ОБЛАСТИРАБОЧАЯ УЧЕБНАЯ ПРОГРАММАПО ПРЕДМЕТУ "АНГЛИЙСКИЙ Я...»

«Протокол № 131016/2908/051-2 заседания Закупочной комиссии АО АЭС АККУЮ по рассмотрению и оценке заявок открытого запроса предложений на право заключения договора на выполнение работ по теме "Получение разрешений на строительство в береговой зоне АЭС "Аккую". г. Москва "01" ноября 2013 г. Время начала...»

«Протокол комиссии по проведению предварительного отбора на включение в реестр квалифицированных подрядных организаций, имеющих право принимать участие в электронных аукционах, предметом которых являет...»







 
2018 www.el.z-pdf.ru - «Библиотека бесплатных материалов - онлайн документы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 2-3 рабочих дней удалим его.